Identification of Novel Phytotherapeutic Agents for Understanding Hypertrophic Cardiomyopathy via Genetic Mapping and Advanced Computational Analysis.

Abdullahi, T. A. ¹, Onifade, I. A.², Ammar, U. D.³, Christopher, B. O., Haruna, I. U.^{4,5}, Abraham, O.⁶, Awaji, A, A. ⁷, Awaji, F.A.⁸, Omojowolo, E.A. ⁹, Kuthi, N.A.¹⁰, Shaikh, T.¹¹, Anidu, B.S. ¹², Alexiou, A ^{13,14}, Adesola, R.O.¹⁵, Olapade, Z. ¹⁶, Awah, F. M.¹⁷, Ameh, B.¹⁸, Oni, T.Y.¹⁹, Bakre, A.A. ¹⁵, Scott, G.Y.²⁰*

¹Department of Chemistry, Mississippi State University, MS USA; ²Department of Biology, University at Albany, NY, USA; ³Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; ⁴Department of Biotechnology, Federal University of Technology, P. M. B. 704, Akure, Ondo State, Nigeria; ⁵Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Nigeria; uhumar@futa.edu.ng ⁶Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, USA ⁷Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk 71491, Saudi Arabia; 8King Fahad Specialist Hospital Laboratory and Blood Bank Health Cluster, Tabuk, Saudi Arabia; Department of Chemistry, University of Albany, State University of New York, Albany, NY, 12222, USA; ¹⁰Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor, Malaysia; ¹¹Department of Chemistry, Mississippi State University, ¹²Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minnesota, USA; ¹³Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; ¹⁴AFNP Med, 1030 Wien, Austria; ¹⁵Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria; ¹⁶Department of Biology, Lamar University, Texas, USA: ¹⁷Department of Biochemistry, Center for Discovery and Innovation, City University of New York, New York, USA; ¹⁸University of West Georgia, Carrolton, GA, USA; ¹⁹Department of Biochemistry, Federal University of Technology, Akure, Nigeria; ²⁰Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Abstract

Hypertrophic cardiomyopathy (HCM) is a classic example of a monogenic cardiovascular disorder that has been less comprehensively studied at the molecular, genetic, and computational levels. This study aim s to examine and understand the genetic mapping of HCM polymorphic targets using a computational approach to identify new phytochemicals that may have therapeutic properties. The study results show the range of mutations associated with cardiomyopathies by identifying new associations between genes and phenotypes in this disease category. Additionally, our findings suggest that a number of genes associated with channelopathies may serve as genetic modifiers, altering the clinical features and severity of cardiomyopathic phenotypes while also impacting the diverse manifestation of the cardiomyopathic phenotype.

Keywords: Genetic Mapping; Hypertrophic Cardiomyopathy; Polymorphic Target; Phytotherapeutics